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Abstract— A model for the dissipation of energy from a collective degree of freedom represented by free motion into intrinsic excitations
represented by three coupled oscillators is presented. It is shown that by approximating the Hamiltonian of a system of interacting particles
as a sum of two Hamiltonians the quantum mechanical version of frictional effects of the system can be studied.
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1  INTRODUCTION
riction or dissipation in a physical system is a classical
physics concept. In quantum mechanics dissipation is con-
sidered to be the conversion of energy of collective degrees

of freedom into intrinsic excitations [1]. Examples of dissipa-
tive system are the damping energy of a particle while moving
in a viscous medium; the noisy interaction observed when
atoms or molecules traverse cavities irradiated by microwaves
or the phonon field in superconducting quantum interference
devices (SQUIDs)[2],[3],[4],[5],[6]. Dissipation has been shown
to exist in nuclear physics, particularly in reactions where
large scale collective motions are involved such as in nuclear
fission, deep-inelastic heavy-ion reactions and giant resonance
excitations [7],[8],[9],[10],[11],[12],[13],[14],[15]. There are basi-
cally two different methods used to quantize dissipative sys-
tems. The first method, by Kanai [16] consists of starting with
Newton’s equations of motion for the system with dissipation,
due to a velocity-dependent force, finding the Lagrangian
which leads to these equations of motion, and then proceeding
to quantization by conventional formal methods.  This method
is invalid because it violates the uncertainty principle. Senitz-
ky [17] assumed dissipation as due to the interaction of two
systems-the lossless oscillator and the loss mechanism–and
used approximation method to solve the problem. This second
method is the appropriate one because the result obtained is
consistent with the principles of quantum mechanics. Another
method by Kan and Griffin [18] consists of quantizing the lin-
ear harmonic oscillator with friction under the requirement
that in the classical limit a frictional force is obtained, and that
at any time the total energy is equal to the sum of the expecta-
tion values of the kinetic and potential energies. This could
only be achieved if in addition to the frictionless Hamiltonian
a friction term and a counter-term were present. This however,
leads to a nonlinear Schrödinger equation with two sets of
solutions: damped and un-damped ones.
Mshelia et al. [1] developed a quantum mechanical description
of the energy that is lost or dissipated from the kinetic energy
of the two bombarding nuclei into intrinsic excitations. They
consider  the  energy  dissipation  as  caused  by  the  coupling  of
relative motion of the two ions to intrinsic degrees of freedom.
This idea led to the solution of some integro-differential equa-
tions for the functions which determine the probability of find-

ing the intrinsic energy within some energy interval.
This paper considers the application of the above theory of
energy dissipation to a model of three oscillators coupled to
free motion, the bases for this application is given in Mshelia et
al., [19]. In section2 the model of the coupled harmonic oscilla-
tors is given. Section 3 is the solutions of the eigenvalue equa-
tions for the total and intrinsic Hamiltonians. Section4 is a der-
ivation of the probability amplitude for the intrinsic excitation,
while section 5 deals with the numerical calculations and dis-
cussion of the results and finally in section 6 is the conclusion
and the future outlook.

2 METHOD: THE MODEL

The model considered in this work consists of three oscillators
coupled to translational motion. The oscillators described by
the coordinates 21, xx and 3x , represent the intrinsic degrees of
freedom, and the translational motion, described by x , the
collective degree of freedom. According to Mshelia et al. [19]
and Mshelia [20], the total Hamiltonian is split into the collec-
tive and intrinsic parts as given by

xHxxxxHH collr ,,, 321int (1)

 where 21, xx and 3x  are the set of intrinsic coordinates

and x the collective variable. The collective Hamiltonian collH
depends only on the collective variable while the intrinsic
Hamiltonian rH int depends on both the intrinsic and collective
variables, however independent of the momentum canonically
conjugate to x .
The terms on the right-hand side of (1) are explicitly stated as
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The collective Hamiltonian is assumed to be that of a free par-
ticle with mass M. The three oscillators in (3) have the same
mass m and are coupled to the collective motion via the same
coupling constant c.  The coupling of  the intrinsic  coordinates
to the collective coordinate simulates the dissipation of energy
from the collective degree of freedom to intrinsic excitation.
Using (2) and ( 3) the total Hamiltonian (1) is explicitly written
as

2 2 2 2 2 2
2
12 2 2 2

1 2 3

1
2 2 2

H c x
m x x x M x

2 2 2
2 3 1 2 33 2x x x x x x x (4)

This Hamiltonian shows that the kinetic energy operator is
diagonal in the coordinates, while the potential energy is non-
diagonal due to the products xx1 , xx2 , and xx3 . These off-
diagonal terms give rise to the coupling of the collective and
intrinsic motions.
To study the different modes of the motions, Mshelia et al. [19]
and Mshelia [20] showed, that a transformation to normal co-
ordinates can be made such that these coordinates are uncou-
pled [21], thereby making the problem completely separable
into the independent motions, each with a particular normal
frequency. The normal frequencies of vibration i are deter-
mined by the secular equation

0ˆˆdet 2TV (5)
where the potential energy and kinetic energy matrices are
respectively
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The frequencies obtained are:
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The eigenmode corresponding to the zero eigenfrequency

4 describes a uniform translational motion of the system as a
whole.
A transformation to normal coordinates results in:

xxxxg 3
3
1

3211 ,

3212 2 xxxg , (8)

313 xxg ,

Mxmxmxmx
Mm

g 3214 3
1

.

The corresponding masses are given by
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mM

3
3

1 62
m

23
m Mm34

Using these normal coordinates the total Hamiltonian (4)
transforms into the following

2 2 2 2 2

2 2 2 2
1 1 2 2 3 3 4 4

1 1 1 1
2

H
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1
2

g g g (9)

this shows the normal modes of vibration.

2.1 Time Independent Schrödinger Equation for the
Total nnd Intrinsic Hamiltonians
The eigenvalue problem of the total Hamiltonian (9) is

43214321 ,,,,,, ggggEggggH .              (10)

The introduction of the normal coordinates 4321 ,,, gggg  de-
couples  the  vibration  of  the  system into  normal  modes  of  vi-
bration and a free translational motion of the centre of mass;
hence the eigenvalues and eigenfrequencies may be obtained
as

2
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1 2 3 1 2 31 2 3 4 1 2 3, , ,kr r r r r rg g g g g g g

4kU g ,              (12)

44 exp
2
1 ikggU k ,              (13)

where the quantum numbers are ,,2,1,0,, 321 rrr and

k is  the  wave  number  of  the  plane  wave  (13),  normalised  by
the Dirac - function. The normalised eigenfunctions of the
harmonic oscillator are defined by

iiriirir gHgNg
i 11

22

2
1exp 3,2,1i  (14)

The quantity iir gH
1

is  a  Hermite  polynomial  of  order

ir and the inverse oscillation lengths and the normalization
constant occurring in (14) are respectively defined by:
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The total wave function (12) is normalized as follows:

kkdgdgdgdgrrrkrrkr 4321321321

332211 rrrrrr .              (16)

The eigenvalue problem of the intrinsic Hamiltonian is solved
as follows:
Defining the following change of variables

xx11 , xx22 , xx33                               (17)
the eigenvalue equation takes the form

2 2 2 2
2 2 2

1 2 32 2 2
1 2 32 2

c
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1 2 3 1 2 31 2 3 1 2 3, , , ,s s s N s s s               (18)

resulting in the following set of eigenvalues and eigenfunc-
tions of the harmonic oscillator:
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2.2 The Distribution Function for Intrinsic Excitation
The total wave function may be expanded in terms of the ei-
genfunctions of the intrinsic Hamiltonian, since these eigen-
functions form a complete set. Therefore by the completeness
relation [22]

321

321

321

321321
,,

321 ,,
sss

sss
rrkr
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The expansion coefficients xf rrkr
sss

321

321
, are the collective wave

functions and represents the probability amplitude for the
excitation of the intrinsic motion. Multiplying from the left by
the complex conjugate function

321 sss and integrating over

intrinsic coordinates the probability amplitude be-
comes

1 2 3
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s s s s s s kr r rf x g g g g

1 2 3dx dx dx (21)
The integral above can be analytically evaluated after inserting
the wave functions from (12) and (19c) and taking the expres-
sions (8) for the normal coordinates into account. The resulting
integral is

321321

321

321 2
1

rrrsss
rrkr

sss NNNNNNxf

2
3

2
2

2
1

2 15
6

exp xxx

1115
2
3 222 xx

11
3

2

321 xxxb

x
m
Mbxxxxxx 323121

xxHxxH ss 21 21

313 233
xxHxxH rs

xxxxH r 3
3 3211

2 1 2 3 1 2 32
6rH x x x dx dx dx             (22)

where the constants
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             (23)

Using the method of completing the square of a quadratic
equation and application of the addition theorem for Hermite
polynomials [23], [24]
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The final form of the collective amplitudes is
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where the quantities on the right-hand side are defined by
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and the following shorthand notations have been introduced

83214 mmrm , 94315 mmrm .

The dimensionless constants ia occurring  in  (25)  have  been

expressed in terms of , as follows:
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The integral occurring in (25) is defined by
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Its analytical solution can be found in Lord [25]. It can be
shown that the amplitude (25) satisfy the normalization condi-
tion
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The physical meaning of the quantity
2

321

321
xf rrkr

sss is the prob-

ability that in the state the intrinsic energy will have one of
the energy values of the discrete spectrum. That is, it is a
measure for the internal excitation.

3 RESULTS: NUMERICAL CONSIDERATION
The amplitude given in (25) leads to the following graphical
values of probability distributions for the intrinsic excitations.
In the numerical calculation the final formulae contain only
varied dimensionless quantities, such as the ratio of oscillator
mass m  to the central mass M ;  the ratio of the energy of
free motion kE to the energy of oscillator spacing,

MmkEE kk 32~ 2 ; and the ratio of the in-
trinsic excitation energy to the energy of the oscillator spacing,

NN
~ .

The plot of Fig.1 is that of
2

321

321
2 xf rrkr

sss , as functions of the

energy kE~ of free motion, for various quantum numbers,

321321 ,,,,, rrrsss  and for fixed ratio of masses 1Mm .
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Curves for the set of collective quantum numbers
0321 rrr  and 232 rr , 03r  and their intrinsic

numbers, which for Fig.1a are: (i). 0321 sss ;

(ii). 11s , 032 ss ; (iii). 121 ss , 03s ;

(iv). 11s , 22s , 13s ; (v). 11s , 32s , 13s ;

(vi). 11s , 72s , 13s , and Fig.1b is that of:

(i). 1321 sss ; (ii). 121 ss , 03s ;

(iii). 11s , 032 ss .

0 2.5 5 7.5 10 12.5 15 17.5
EŽk

0.2

0.4

0.6

0.8

1

2
pf

x
2

ä

II

III
IV

V

VI

0 2 4 6 8 10 12 14
EŽk

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2
pf

2

ä

II
III

Fig.2a and 2b show plots of probability distributions as func-

tions of kE~  for various fixed sets of quantum numbers and for

various ratios Mm . Two sets of quantum numbers have been

chosen for illustration. These are for collective quantum num-
bers 0321 rrr and intrinsic numbers 121 ss ,

03s for Fig.2a: (A)
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 The following Fig.3 depicts the plot of probabilities as func-
tions of the intrinsic quantum numbers. Here 3s  is  kept con-

stant and 1s  is varied to obtain the probability distributions

Fig. 1a: Probability density against kE~
for 0321 rrr  and various val-
ues of 321 ,, sss

Fig. 2a: Probability density against kE~
for 0321 rrr  and 121 ss , 03s
with various values of mass ratios Mm

Fig. 1b: Probability density against kE~
for 0,2 321 rrr and various val-
ues of 321 ,, sss

Fig.2b: Probability density against kE~ for
221 rr ,, 03r and 21s , 02s ,

13s  with various values of  mass ratios
Mm
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for different values of 2s .
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Fig.4 shows the plot of the probability density against the
mass ratio Mm ,  for  varying  values  of 1r  and 2s  and
constant values of the intrinsic and collective quantum num-
bers. For Fig.4a: 0321 sss and 032 rr  .  And  for

Fig.4b: 031 ss and 0321 rrr
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4 DISCUSSIONS
Fig.1 shows that the excitation of intrinsic states 321 ,, sss

has an increasing width with increasing energy kE~ .  We  ob-
serve also that the distributions are all peaked except that of
the ground state, Fig.1a, (i) which has a maximum value of

about 0.47 at around 0~
kE . Also, the results of Fig.1 show

that the probability for intrinsic excitation is highest only for

specific energy ratios kE~ .
Fig.2a shows that the widths of the probability distributions
decreases with increasing ratio Mm ; the peaks, at specific

value of kE~ for each ratio Mm , decreases with decreasing

ratio Mm and is shifted to a higher kE~ value. It is noticeable
that the plots exhibits lower peaks and fast vanishing proba-
bility amplitudes with increasing quantum number.
In Fig.3 the probability amplitudes exhibit oscillatory features.
This structure reveals that intrinsic states can be excited or de-
excited in any higher-lying energy states other than zero.
Fig.4 implies that the intrinsic excitation is possible for small
ratios of masses when in their ground states while excitation is
possible for large ratios of masses when they are in states oth-
er than their ground states.

5 CONCLUSION
This paper has demonstrated the problem of energy dissipa-
tion from a collective coordinate into internal degrees of free-
dom by using an analytically solvable two oscillators coupled
to free motion. The results obtained here are in agreement
with similar models calculated previously [19], [26]. The mod-
el can be extended to the more realistic but more complex case
of heavy-ion collisions, where energy dissipation plays an im-
portant role in deciding whether the fusion of superheavy el-
ements is possible or not. To achieve this extension we shall
have to solve the time-dependent Schrödinger equation in the
future.
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